To prove two spaces are homeomorphic

X homeomorphism >>

we need to find it.

To prove two spaces are not homeomorphic, we usually use contradiction or contrapositive.

Examples

 $(\mathbb{R}, std) \neq (S', std)$

noncompact compact

([0,1], Std) = (5', Std)

both compact

= x E [O,1],

[0,1]\{x} is

disconnected

Y yes 5' \ {y} is connected.

Exercise.

* Justify the above, i.e., if X, Y are homeomorph!e and I xeX such that X18x9 is disconnected, then I yet such that Tigg is disconnected.

 $\mid \uparrow \rangle \neq S'$

10:18 AM

General Principle

Find a topological property P, i.e.,

(Above examples

1 D: compactness

(2) P: connectedness

(3) P: = x x X X x f is disconnected

Written Mathematically, they become

(D) $k : \{Topological spaces \} \longrightarrow \} \pm 1\}$ $k(X) = \{1 \times is compact\}$ $k(X) = \{-1 \times is non-compact\}$ $k(R) \neq k(S') \implies R \neq S'$

② $C: \{ Topological spaces \} \longrightarrow M \cup \{ M \}$ C(X) = # of connected components $C([0/1]) = 1 = R(S^1)$ no conclusion

3) $S: \{Topological spaces \} \longrightarrow MU \{N\}$ $S(X) = Sup \{c(X \setminus \{x\}) : x \in X\}$ $S([0,1]) = 2 \neq 1 = S(S') \Rightarrow [0,1] \neq S'$

Tuesday, April 18, 2017

9:23 AM

Euler Characteristic

X: [Topological] -> Z

spaces

 $\begin{array}{c}
V - E \\
V - E + F \\
V - E + F - S
\end{array}$ $\begin{array}{c}
Y - E + F - S \\
Solid \\
Y - E + F - S
\end{array}$ $\begin{array}{c}
Y - E + F - S \\
Solid \\
Y - E + F - S
\end{array}$ $\begin{array}{c}
Y - E + F - S \\
Y - E + F - S
\end{array}$ $\begin{array}{c}
Y - F + F - S \\
Y - - S$

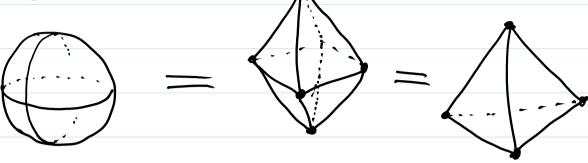
X = [0,1]

 $2-1 = \chi(co, 1) = 6-5$

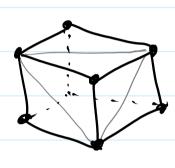
X = S'or

not $2-2 = \chi(S') = 9-9$

•
$$X = Z_{5}$$



 $6-12+8 = \chi(5^2) = 4-6+4$



Dodecahedron

Icosahedron

___ non-compact

•
$$X = B^3$$
, the solid ball

$$X(B_3) = X(Z_5) - 2019 = 5 - 1 = 1$$

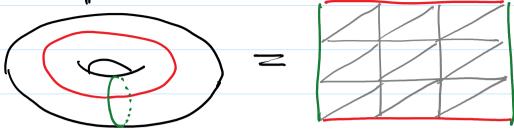
· The above examples are all compact, so V, E, F, etc are finite numbers.

Explore inductively and get a value for $\chi(\mathbb{R}^2) = \chi(\mathbb{R}^n)$

Lectures Page 4

9:24 AM

· Torus T2



$$\chi(T^2) = 9 - 27 + 18 = 0$$

Remark: T2=51x51

Fact.
$$\chi(x \times Y) = \chi(X) \cdot \chi(Y)$$

Advantage of topological involvents: there is algebraic relation; can be calculated.

· Compact orientable surfaces

• Other non-orientable surfaces $\chi(\mathbb{RP}^2) = 1$, $\chi(\text{klein}) = -1$

Fact. Let X,Y be compact surfaces $X = Y \iff \chi(X) = \chi(Y)$ No such nice fact in higher dimensions.